5 resultados para POPULATION ADMIXTURE

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, studies based on isoenzymatic patterns of geographic variation have revealed that what is usually called the Africanized honey bee does not constitute a single population. Instead, several local populations exist with various degrees of admixture with European honey bees. In this paper, we evaluated new data on morphometric patterns of Africanized honey bees collected at 42 localities in Brazil, using univariate and multivariate (canonical) trend surface and spatial autocorrelation analyses. The clinal patterns of variation found for genetically independent characters (wing size characters and some wing venation angles) are concordant with previous studies of malate dehydrogenase (MDH) allelic frequencies and support the hypothesis that larger honey bees in southern and southeastern Brazil originated by racial admixture in the initial phases of African honey bee colonization. Geographic variation patterns of Africanized honey bee populations reflect a demic diffusion process in which European genes were gradually lost because of the higher fitness of the African gene pool in Neotropical environmental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The correspondence between morphometric and isozymic geographic variation patterns of Africanized honey bees in Brazil was analyzed. Morphometric data consisted of mean vectors of 19 wing traits measured in 42 local populations distributed throughout the country. Isozymic data refer to allelic frequencies of malate dehydrogenase (MDH), and were obtained from Lobo and Krieger. The two data sets were analyzed through canonical trend surface, principal components and spatial autocorrelation analyses, and showed north-south dines, demonstrating that Africanized honey bees in southern and southeastern Brazil are more similar to European honey bees than those found in northern and northeastern regions. Also, the morphometric variation is within the limits established by the racial admixture model, considering the expected values of Africanized honey bee fore wing length (WL) in southern and northeastern regions of Brazil, estimated by combining average values of WL in the three main subspecies involved in the Africanization process (Apis mellifera scutellata, A. m. ligustica and A. m. mellifera) with racial admixture coefficients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SNaPshot minisequencing reaction is in increasing use because of its fast detection of many polymorphisms in a single assay. In this work we described a highly sensitive single nucleotide polymorphisms (SNPs) typing method with detection of 42 mitochondrial DNA (mtDNA) SNPs in a single PCR and SNaPshot multiplex reaction in order to allow haplogroup classification in Latin American admixture population. We validated the panel typing 160 Brazilian individuals. DNA was extracted from blood spotted on filter paper using Chelex protocol. Forty SNPs were selected targeting haplogroup-specific mutations in Europeans, Africans and Asians (only precursors of Native Americans haplogroups A2, B2, C1, and D1) and two non-coding SNPs were chosen to increase the power of discrimination between individuals (SNPs positions 16,519 and 16,362). It was done using a modified version of a previously published multiplex SNaPshot minisequencing reaction established to resolve European haplogroups, adding SNPs targeting Africans (L0, L1, L2, L3, and L*) and Asians (A, B, C, and D) haplogroups based on SNPs described at PhyloTree.org build 2. PCR primers were designed using PerlPrimer software and checked with the Autodimer program. Thirty-three primer-pairs were used to amplify 42 SNPs. Using this panel, we were able to successfully classify 160 individuals into their correct haplogroups. Complete SNP profiles were obtained from 10. pg of total DNA. We conclude that it is possible to build and genotype more than 40 mtDNA SNPs in a single multiplex PCR and SNaPshot reaction, with sensitivity and reliability, resolving haplogroup classification in admixture populations. © 2011.